在现代前端开发中,文本分析技术的应用变得越来越广泛,因为当下的用户需要可靠的自然语言处理实现他们的日常业务需求。Node-RED 是 Node.js 编写的,基于流数据编程的开发工具,为前端设计者提供了许多的开发灵活性。node-red-contrib-textanalytics-ja 是一款开发者可以使用的 npm 包,它可以实现自然语言文本分析功能。
什么是 node-red-contrib-textanalytics-ja?
node-red-contrib-textanalytics-ja 是为 Node-RED 的日语文本分析的节点流提供了“形态素解析”和“自然言語処理”能力的 npm 包。形态素解析是自然语言处理技术,是一系列处理文本的技术,包括分词、分隔、转换、词性标记等。自然语言处理是一种计算机科学和人工智能领域的交叉学科,旨在解决计算机与自然语言之间的相互作用问题。它涉及文本处理技术,自动识别同义词和词义消歧等。
node-red-contrib-textanalytics-ja 可以在 Node-RED 上通过简单的方式安装,在您的工作流程中提供自然语言处理的神经元。
安装 node-red-contrib-textanalytics-ja 的 npm 包
node-red-contrib-textanalytics-ja
node-red-contrib-textanalytics-ja 的使用
形态素解析
形态素解析是将日语句子拆分为单独的词组,识别每个词的词性和发音。Node.ui 组件已配置为使用 MeCab-Node.js 进行解析。
以下是一个使用 node-red-contrib-textanalytics-ja 的形态素解析流的示例代码:
[{"id":"dfce3cb0.211ae8","type":"inject","z":"6805520.9d492dc","name":"","props":[{"p":"payload"},{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDelay":0.1,"topic":"","payload":"今日はいい天気ですね。","payloadType":"str","x":220,"y":260,"wires":[["5096ca84.6e82d4"]]},{"id":"5096ca84.6e82d4","type":"function","z":"6805520.9d492dc","name":"textanalytics_ja","func":"msg.language = 'ja';\nmsg.payload = {\n text: msg.payload\n }\nmsg.nodemode = 'morpheme';\nreturn msg;","outputs":1,"noerr":0,"initialize":"","finalize":"","libs":[],"x":470,"y":260,"wires":[["3c1160fe.9a2238"]]},{"id":"3c1160fe.9a2238","type":"textanalytics_ja","z":"6805520.9d492dc","name":"","variable":"payload","disbleOutput":false,"outputTxt":"","x":720,"y":260,"wires":[[]]}]
自然语言处理
自然语言处理涉及到的任务包括文本分类、句子分割、语音生成、语音识别、关键词提取等等。Node-red-contrib-textanalytics-ja has already pre-configured for using NEologd in text analytics with TensorFlow.
以下是一个使用 node-red-contrib-textanalytics-ja 的流程实现自然语言处理的示例代码:
[{"id":"7d0ac9f5.ef7b54","type":"inject","z":"861eb6d3.f3cd98","name":"","props":[{"p":"payload"},{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDelay":0.1,"topic":"","payload":"工業用コンピューターの性能がさらに進歩した。","payloadType":"str","x":230,"y":540,"wires":[["608303f7.0b493"]]},{"id":"608303f7.0b493","type":"function","z":"861eb6d3.f3cd98","name":"textanalytics_ja","func":"msg.language = 'ja';\nmsg.payload = {\n text: msg.payload\n }\nmsg.nodemode = 'natural_language';\nreturn msg;","outputs":1,"noerr":0,"initialize":"","finalize":"","libs":[],"x":450,"y":540,"wires":[["89e6b2d6.0a6b98"]]},{"id":"89e6b2d6.0a6b98","type":"textanalytics_ja","z":"861eb6d3.f3cd98","name":"","variable":"payload","disbleOutput":false,"outputTxt":"","x":700,"y":540,"wires":[[]]}]
总结
在本文中,我们深入了解了使用 npm 包 node-red-contrib-textanalytics-ja 实现自然语言处理和形态素解析的方法。这个 npm 包提供了一些实用的函数,可以帮助我们开发文本分析相关的流程。通过本文的指导,相信读者在开发过程中已经有了一定的收获。
来源:JavaScript中文网 ,转载请注明来源 https://www.javascriptcn.com/post/6005668681e8991b448e2b92